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@ CGI HLC Modeling: From Design to Testbed Demo

* WFIRST-CGI Phase B PDR (in Sept): nFOV/HLC Band 1 testbed demo*

Purpose: Meet the raw contrast requirement within required time allocation,
both on ground and in-orbit WFC

* Modeling actively involved:
— Mask design: mask baselining

Fabrication error tolerancing, flight performance prediction, general feedback to design

— Testbed demo: performance validation
IS Ground WFC (from flat DM)

- In-orbit WFC (from ground seed DM)

Open loop sensitivity

— Testbed WFC diagnosis

Ground WFC, when from design DM solution

* Seo, J. et al. Proc. SPIE 11117-53, this conference Proc. (talk on Thursday)
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lin Exploratory HLC Occulter Mask Designs for Phase B€&Ea38

a7
<z

* Promising performances; but requires new fabrication process / method
— Q: Are they viable? Are there risks?
* Modeling to address design mask viability concern:
— Robust to fabrication, 1&T, and launch uncertainties? Impact on LOWFS? Meet key L-3/4 Req’s?
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Major Fab Errors: Measurement and In Model

* For modeling: derive HLC occulter transmission from thin-film equation directly
* “Design” mask typically given in complex transmission (for modeling)

e Add thickness errors for both PMGI and nickel in terms of mean offsets and scale variations
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Main Findings From Exploratory Design Evaluation @38

* Extended PMGI and/or multi-nickel designs require tighter fabrication tolerancing

— 1~ 5% for PMGI mean, scale, Nickel mean and scale, exceeding existing fabrication capabilities

— More work needed in better design optimization (to reduce fab risk)

Traditional style designs: possible options that can meet Phase B telescope interface Req.

Band | Design | uiom | eyp | MO | 3Gio | 3iuo | sanp | mesm | sele | mean | wale | MO
Rms/PV 1nm 1nm 1nm 10% | 10%——310%—| 10%
1 | 441E-09 | 3.13% |37/255;40/293 | 1.10E-09 | 9.40E-09 | 4.80E-09-77.70E-08 | 1.10E-06 | 7.20E-09 | 5.60E-09 TN{ulti nickel
_ 2 | 3.45E-09 | 4.09% |31/223;33/215 |5.10E-10 | 1.88E-08 6.505-05\1@8 1.54E-08 2.765wﬁulti nickel
3 | 1.94E-09 | 3.36% |39/267;40/241 |2.29E-10 | 3.92E-09 | 7.36E-10 | 6.00E-10 |  NA /{355-08 4.89E-09 NExt'd pmgi
4 | 2.408-00 f 2.70% ) 29/211; 30/204 | 2.45E-10 | 1.46E-08 | 2.67E-09 | 6.11E-10 NA( 2.52E-08 | 7.50E-10 E))t'd pmgi Eﬁzr:ded
Band 1 5 | 2.036-09 '\ 4.57% /29/211;30/204 | 1.27E-10 | 8.69E-09 | 2.81E-09 | 3.67E-10 |  NA \\L@s 3.7EO//Ext'd pmgi
6 | 1.92E-09 | 4.10% |30/225;35/226 | 1.05E-10 | 5.81E-09 | 1.82E-09 | 8.16E-11 | NA | 7.20E-11 | 4.91E-12 | Traditional
7 1.73E-09 | 4.56% |27/185;32/204 | 9.55E-11 | 5.42E-09 | 1.69E-09 | 8.72E-11 | NA | 3.78E-10 | 1.06E-11 | Traditional |  Traditional
8 | 1.90E-09 | 4.10% |31/274,34/276 | 1.52E-10 | 6.53E-09 | 2.39E-09 | 6.05E-11 | NA | 5.90E-10 | 1.34E-10 | Traditional
9 | 525E-09 [ 5.33% [\33/212;34/213 | 1.27E-10 | 8.69E-09 | 2.81E-09 | 5.48E-09 | 7.24E-09/ 4.80E-09 | 4.04E-09\ Multi nickel
Band3 | 10 | 439E-09 \4.85% 37/259;39/230 | 6.46E-11 | 1.18E-08 | 2.26E-09 | 9.80E-10 | 2.70E-09 \2.90E-09 | 2.00E-0%/| Multi nickel
11 | 5.41E-09 | 3.95% |27/185;32/204 | 1.64E-10 | 3.45E-09 | 1.30E-09 | 5.36E-11 NA | 5.73ET0T3276-11 | Traditional | Traditional
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@ Standard Procedure For Baselining Design Mask

Many inconsistencies and errors among designs found during preliminary design evaluation:

=

Standard procedure for systematic evaluation and mask baselining:

Model, Aber and error inputs, WFC scheme/flight constraints, evaluation metric, etc.

* Model = Full PROPER Contrast Truth sub-model + Compact Control sub-model

[Fresnel propagation, distr. aber]

Full flight CBE optic surf aber (tel +toma +CGl)
Ground-to-orbit OTA-CGI misalignments
Polarization effect

FPM fab errors (PMGI &Nickel, mean & scale)

08/12/2019

For high fidelity

[FFT propagation except btwn DM1 <-> DMZ]

- )

Compressed aberration from full
model; “known” imperfections only

For flight-like WFC

SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Standard Procedure For Baselining Desigh Mask

Standard procedure for systematic evaluation and mask baselining:

Model, Aber and error inputs, WFC scheme/flight constraints, evaluation metric, etc.

WFC =  Ground /$eed generation - In-orbit /*ommission phase

e Start from flat DM setting .
* No limit on Jacobian update or # of iters .

Start from seed DM (ground or design™)
Single Jacobian, max 30 iterations

* Low order WFE flattening before EFC

* 3 subbands ctrl; weighted E field averaging for each subband E field
DM neighbor rule and maximum voltage constraints

Evaluation Metric: Flux Ratio Noise (L3), based on selected key L4 metrics:

Throughput, contrast, coherent/incoherent ratio;

Adjust raw contrast based

sensitivities of Zernike modes 2~11, pupil shear, on CBE disturbances, and >

and DM thermal drift; also off-axis source contrast,

calc statistics for stability

Flux Ratio Noise
calculator

core throughput, peak intensity, PSF core size

L4 metrics

SPIE Austin, TX, 2018, Hanying Zhou, JPL
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Phase B HLC/nFOV Band 1 Baseline Design

Pupil + Lyot mask

RMS=45.9, PV=390.2, nm

DM1 (in WFE)

RMS=47.7, PV=372.2, nm

DM2 (in WFE)

Thickness (nm)

PMGI, Nickel, Titanium profiles scan

Occulter profile, 20190127 design
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e Traditional style design
 But asymmetrical PMGI

SPIE dustin, TX, 2018, Hanying Zhou, JPL

L-3/4 performances:

Throughput: 3.4%

Staticinitraw C:  2.7e-9
Photometry N: 1.4e-9
C stability: 0.6e-9

FRN: 1.4e-9*

*71% margin, slightly > SRR design
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@ Flight WFC Prediction: Ground & In-Orbit WFC

Can dig a dark hole that meets L4 Req, within required time allocation*, for both on ground and in-orbit

Mean NI =1.58e-09, iter 30

* Equivalent to max 30 iterations
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@ Testbed WFC Modeling: Band 1 HLC/nFOV - Overview

Model validation for both ground & simulated in-orbit WFC, Tech testbed configuration

Model: compact for both contrast truth & control (mostly FFT based except DM1 <> DM2)
= Chromatic pupil E fields, flat DM, DM gains; all TTB PR measurement m

= Qcculter fabrication errors*: PMGI mean & scale, nickel mean; AFM measurement TTB

= Pupil mask and Lyot mask clockings (relative to FPM & camera view); testbed characterization u Meas. -

= DM misalighment: tilts and lateral shifts; testbed characterization (past) based

O For in-orbit WFC: all above, plus OTA-s WFE, pupil mask clocking, pupil mask shear, CGl internal input
misalignment, and DM hysteresis (ground DM seed strength)* —

* As knowledge errors; the rest are as known/alignment errors

WEFC:
=  For Ground EFC: start from flat DM solution

» Frequent Jacobians update & beta kick cycles (alternate hi/lo regularizations); no limitation on # of iters
= For in-orbit EFC: start from ground seed, add flight flat, and subtract out ground flat

= Single Jacobian, 1 or 2 beta kick cycles (or quick early multi beta cycles), max 30 iters
= 3 subbands ctrl; weighted E fields averaging for each subband E field; 7 lambdas contrast scoring

= DM neighbor rule and max voltage constraints

08/12/2019 SPIE Austin, TX, 2018) Hanying Zhou, JPL
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i) Model / TTB Comparison, Ground WFC, From Flat

Model validates TTB ground WFC performance: Final dark hole raw contrast
* Both meet raw contrast requirement TTB (modulated) Model

All subbands, C (mod) = 1.5e-09

Contrast (3-9 lam/D) =1.5e-09

* Agrees well in contrast floor and
convergence speed

EFC iters, TTB (contrat, mod) vs model (NI)

TSI T @ A
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@ Model/TTB Comparison, In-Orbit WFC, From Ground Seed

Final dark hole contrast
TTB (modulated) Model

run482it08092, C (mod) = 2.4e-09 Contrast (3-9 lam/D) =1.74e-09

Model validates TTB simulated in-orbit WFC:

* Both meet raw contrast requirement

* W/n the required time allocation (# of iterations)
 Agrees well in contrast floor & convergence rate

10 EFC iters, TTB (modulated) vs model .
T T T T T 10-
(TTB: run4821t#08043-8092) |[—TTB (mod)
—Model
1077 F :
radial S 1S 4~8 8209 3219

= TTB(mod): 2.4e-09 2.5e-09 2.4e-09

g 1081 Model: 2.3e-09 1.6e-09 2.2e-09 1.7e-09 |

5

@)

10_9 | | | | | 10-10 ! 1 1 ! ! !
0 5 10 15 20 25 30 550 560 570 580 590 600
Iter Wavelength (nm)

*modulated part . _
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il Model/TTB Agreement, Open Loop Sensitivities (INFIRST ;

5
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* Generally good match (< factor of 2) except
= ~3X diff in CGl internal misalignment*: 10°
*Src offset at FSM, compensated by FPM

Open loop sensitivities, model vs TTB

> Likely reason: 10°
— Compact model less accurate than full model for

some location dependent terms
— Similar model behavior observed for SPC in the past 447

‘cgi misalign: cgi misalig]

TTB measurement TTB model (compact) Flight model (full)

all bands, contrast 4.4e-07 Mean NI =1.23e-08, iter 0, flattened Mean NI =7.01e-07, iter 0, flattened
e b s

run482it05202

" DH region 2 48 lamiD ]

N AN N NN SN NN N R M B | | [ i |
1231231231231 23123123123
DH regions

2.5-9MD WA, 575nm Ao, 10% BW (7-lams) 2.5 -9 WD WA, 575nm Ao, 10% BW (7-lams)

Full model more accurate than compact model used

08/12/2019 SPIE Austin, TX, 20183 Hanying Zhou, JPL
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@ TTB WFC Diagnosis, Ground WFC, From Design DM

Historically, testbed WFC disagrees w/ model prediction when starting from design DM solution
* Reason identified: incorrect application of design DM solution on TTB
Once corrected = much shortened and less Jacobian-update-need ground WFC

EFC iters, TTB (modulated) vs model Starting Epup: amp (left), phase(right)

T = T

— TTB (mod) |

~ (TTB: run482It #2501-2891)

| ORI N (modeIZJacoblanupdates) B Model

-10 I 1 1 1 I 1 * . . .
0 =0 100 — 200 - 260 350 200 DM expected* (left); dsgn DM applied (right)

Iter
* Diff btwn start/ end EFC DM, when starting from flat DM

08/12/2019 SPIE Austin, TX, 20184 Hanying Zhou, JPL
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 HLC occulter mask evaluation
— Identified potential risks w/ early exploratory mask designs and fabrication process
As a result, traditional style design chosen for risk aversion

» Developed standard evaluation procedure, for masks design evaluation / optimization*,
flight performance prediction

* Testbed WFC performance validating
— Confirmed current Phase B design can meet raw contrast req. w/n the time allocation
— Agreed well in:

* Ground WFC: convergence speed, raw contrast floor, etc.
* In-orbit WFC: convergence speed, raw contrast floor, etc.

* Open loop sensitivity: tip/tilt, pupil mask clocking/shear, CGl internal misalignment

— ldentified implementation error on testbed
* Ground WFC, when starting w/ design DM solution
» Closed major gaps btwn model predictions and testbed results, improved model fidelity

* AJ, Riggs, A simplified version is now in design pipeline
08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL

15



Jet Propulsion Laboratory
California Institute of Technology

@

BACKUPS

08/12/2019 SPIE Austin, TX, 2018, Hanying Zhou, JPL 16



Jet Propulsion Laboratory
California Institute of Technology

@ Flight WFC Modeling: All Bands (1,3,4) — Overview -1

Number of Jacobian (and iteration) of in-orbit WFC, flight optics and configuration

* Model = [full PROPER contrast truth sub model + compact control sub model]:
Contrast truth, for ground:

Flight CGI part optic surface aberrations (i.e., excluding front end telescope and toma optic up
to FSM); no polarization; but add 20nm rms WEF for ground OTA-s, as known error

FPM fabrication error for HLC: PMGI mean offset and scale, nickel mean, as knowledge error

Contrast truth, for In-orbit:

Full flight optic surface aber (telescope + toma +CGl), and polarization effect, consistent with
flight CBE, as known error

FPM: same fabrication error for HLC: PMGI mean, PMGI scale, nickel mean, as knowledge error
OTA: lateral misalignment, clocking, magnification, all as known error

CGl: internal misalignment (misalign DM2 from DM1), as known error

DM: hysteresis, uniform difference in starting actuator height, as knowledge error

Compact control:

08/12/2019

Include known errors as derived from full model but not knowledge errors

SPIE Austin, TX, 20187 Hanying Zhou, JPL
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@ Flight WFC Modeling: All Bands (1,3,4) — Overview -2 @g:=8

Number of Jacobian (and iteration) of in-orbit WFC, flight optics and configuration

* WFC

= Low order WFE flattening (split between two DMs) before EFC
= EFC: 3 subbands ctrl for nFOV & wFOV; 5 for IFS;

o For ground WFC: start with design setting (e.g., use design DM pattern for nFOV mode)
— No limitation on frequency of Jacobian update or number of iterations

, ;‘ o For In-orbit WFC: start with ground seed; but subtract out ground WFE
— Single Jacobian calculation,

wﬁ — Max 30 iterations; max 2 cycles of beta kicks

| = Probing (sensing) is substituted by weighted averaging of E fields for each subband E field
= DM neighbor rule and max constraints

= Contrast scoring: 7 lambdas for Bands 1 & 4 (nFOV & wFOV); 11 lambdas for Band 3 (spectroscopy)

08/12/2019 SPIE Austin, TX, 20183 Hanying Zhou, JPL
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@/ Band 1, HLC/nFOV, Ground and In-Orbit WFC

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

Mean NI =1.58e-09, iter 30

Band 1, HLC, nFOV, ground & in-orbit WFC

'?:-_'}:-_ — Ground (from design DM sol) i
— In-orbit (from ground seed DM) ||

10°

10°
2
B
C
(0]
a <
£2 8 -7
(v g 10
j;;_/{";";' .N
féﬁ}v ©
i ::, g
® '10_8 10 : : :
10 | | | I | |
550 560 570 580 590 600
Lam (nm)
Radial NI coh NI incoh contrast
T R — S v o —— T y 3-4)0/D: 2.20e-09 7.79e-10 2.80e-09
0 5 10 15 20 25 30 4-8\A/D: 1.16e-09 2.47e-10 1.15e-09
lteration 8-9A/D: 2.28e-09 5.95e-11 2.42e-09
HLC-20190210 dsgn; nFOV Band 1, 575nm, 10% Mean:  1.53e-09 2.48e-10 1.51e-09
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Band 3, SPC/Spectro, Ground and In-orbit WFC

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

Band 3, spectroscopy, ground & orbit WFC

.......................................... e ]

10° ——— .
:' | = Ground WFC |
— In-orbit WFC |]

—
o '
(2]

Normalized Intensity
S,

—
o '
@

10

Iteration

IFS-20190130 dsgn; Band 3, 730nm, 18%

08/12/2019
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Mean NI =2.67e-09, iter 30
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@/ Band4, SPC/wFOV, Ground and In-orbit WFC

Can reach dark hole that meets L4 Req, w/ single Jacobian, max 30 iter, for both on ground and in-orbit

Mean NI =1.11e-09, iter 30

10° —— —_— :
<N ———Ground WFC |]
_Inforbit WFC [] 1
R T I
a 17
s s s et Aot S e S
[T U Y N SRR SRR S S I
. =
T 10
N
E 2?25 -20 -15 -10 -5 0 5 10 15 20 25 1o
g 5.4 - 20 MD WA, 825nm Ao, 10% BW (7-lams)
o
=z
10° NI coh NI incoh contrast
1.16e-09 8.42e-11 1.40e-09
7.95e-10 9.97e-12 8.33e-10
1 2.93e-09 3.71le-11 5.09e-09
10 i ;
0 5 10 15 20 o5 20 1.03e-09 1.57e-11 1.0%e-09
lteration 1.48e-09 4.38e-11 2.44e-09

wFOV -20181220 dsgn; Band 4, 825nm, 10%
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@/ Misc. Info: Occulter Mask Fab Error

RED SU
INFRAGe SURVEY T

E |
\eLD g

Design AFM measurement Difference (mean subtracted)
Occulter PMGI, 20190210 design Height (nm), AFM measurement, mean (~187 nm) adjusted Occulter PMGI, 20190210, design vs fab, avg scale err 62nm,8.6%
-3 -3 T T T T T
1000 m .
= ol . "
|
1800
-1 qF
[ ] | |
’600 Eo 1600 g 0 J 0
1400 1 N -I
s}
200 2 ol ., 5
|
i | .
/_,; \ % 2 1 0 1 2 3 ?3 2 1 0 1 2 3 500
f“ | x (lam/D) A/D
oz . . (Mean subtracted)
< Occulter profile, 20190210 design
F N4 1200 T T T T T T
‘il T :, v = Titanium
e — Nickel
] — PMGI-x
1111 e RS 0 S S R ST ! PMGI-y I
; o Based on AFM measurement
= = 5 | e iy, s, e | * Mean PMGI offset: ~187nm — w/n conservative
= .
2 7 * Avg PMGI scale err: ~ 9% estimates
3 V1
: A . .
e * Minor impact on WFC NI / iter
200 =
0
-5 4 -3 2 1 4 5
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